GfsBoundary

From Gerris

Revision as of 06:17, 16 April 2009; view current revision
←Older revision | Newer revision→
Jump to: navigation, search

Examples

  • B\'enard--von K\'arm\'an Vortex Street for flow around a cylinder at Re=160
  •   left = Boundary {
        BcDirichlet U 1
        BcDirichlet T { return y < 0. ? 1. : 0.; }
      }
    

  • Vortex street around a "heated" cylinder
  •   left = Boundary {
        BcDirichlet U 1
      }
    

  • Parallel simulation on four processors
  •   left = Boundary {
        BcDirichlet U 1
        BcDirichlet T { return y < 0. ? 1. : 0.; }
      }
    

  • Collapse of a column of grains
  •     top = Boundary {
    	# shift the reference pressure by the hydrostatic pressure of
    	# the light phase, i.e. P = 0 at the bottom boundary in the
    	# light phase. I am not sure whether this makes a real
    	# difference.
    	BcDirichlet P -RHOF*LDOMAIN
    	BcNeumann V 0
        }
    

        bottom = Boundary {
    	# no-slip at the bottom
    	BcDirichlet U 0
        }
    

        right = Boundary {
    	BcDirichlet V 0
        }
    

  • Viscous folding of a fluid interface
  •     bottom = Boundary {
            BcDirichlet U 0
        }
    

        left = Boundary {
            BcDirichlet V 0
        }
    

        right = Boundary {
            BcDirichlet V 0
        }
    

        left = Boundary {
            BcDirichlet U velocity_bc(y, t)
        }
    

        bottom = Boundary {
            BcDirichlet U 0
        }
    

        bottom = Boundary {
            BcDirichlet U 0
        }
    

  • Turbulent air flow around RV Tangaroa
  •     left = Boundary {
    	BcDirichlet U 1
        }
    

        right = Boundary {
    	BcNeumann U 0
    	BcDirichlet P 0
        }
    

  • Atomisation of a pulsed liquid jet
  •     left = Boundary {
    	# Pulsed jet on inflow
    	BcDirichlet U T0*(1. + 0.05*sin (10.*2.*M_PI*t))
    	BcDirichlet T T0
    	BcDirichlet V 0
    	BcDirichlet W 0
        }
    

  • Air-water flow around a Series 60 cargo ship
  •     left = Boundary {
            BcDirichlet P 0
            BcDirichlet V 0
            BcDirichlet W 0
            BcNeumann U 0
            BcNeumann T 0
        }
    

        right = Boundary {
            BcDirichlet P 0
            BcDirichlet V 0
            BcDirichlet W 0
            BcNeumann U 0
            BcNeumann T 0
        }
    

  • Lunar tides in Cook Strait, New Zealand
  •     left = Boundary {
            BcFlather U 0 H P M2(t)
        }
    

        right = Boundary {
            BcFlather U 0 H P M2(t)
        }
    

        top = Boundary {
            BcFlather V 0 H P M2(t)
        }
    

        bottom = Boundary {
            BcFlather V 0 H P M2(t)
        }
    

  • Small amplitude solitary wave interacting with a parabolic hump
  •     left = Boundary { BcNeumann U 0 }
    

        top = Boundary { BcNeumann V 0 }
    

        bottom = Boundary { BcNeumann V 0 }
    

        right = Boundary { BcNeumann U 0 }
    

        top = Boundary { BcNeumann V 0 }
    

        bottom = Boundary { BcNeumann V 0 }
    

  • Shock reflection by a circular cylinder
  •     left = Boundary {
    	BcDirichlet P 3.505271526
    	BcDirichlet U 22.049341608
        }
    

        top = Boundary 
    

  • Tsunami runup onto a complex three-dimensional beach
  •     left = Boundary { BcSubcritical U (input - Zb) }
    

  • The 2004 Indian Ocean tsunami
  •     top = Boundary {
    	BcSubcritical V -Zb
        }
    

        bottom = Boundary {
    	BcSubcritical V -Zb
        }
    

        right = Boundary {
    	BcSubcritical U -Zb
        }
    

        left = Boundary {
    	BcSubcritical U -Zb
        }
    

  • Convergence of the Poisson solver
  •   left =   Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
    

      right =  Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
    

      top =    Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
    

      bottom = Boundary { BcDirichlet P (sin (M_PI*3.*x)*sin (M_PI*3.*y)) }
    

  • Convergence with a refined circle
  •    left =   Boundary { BcNeumann P (- 3.*M_PI*cos(M_PI*3.*x)*sin (M_PI*3.*y)) }
    

       right =  Boundary { BcNeumann P (  3.*M_PI*cos(M_PI*3.*x)*sin (M_PI*3.*y)) }
    

       top =    Boundary { BcNeumann P (  3.*M_PI*cos(M_PI*3.*y)*sin (M_PI*3.*x)) }
    

       bottom = Boundary { BcNeumann P (- 3.*M_PI*cos(M_PI*3.*y)*sin (M_PI*3.*x)) }
    

  • Rotation of a straight interface
  •     left = Boundary { 
    	BcDirichlet U y
    	BcAngle T (90. + atan2(1.,t)*180./M_PI)
        }
    

        right = Boundary { 
    	BcDirichlet U y
    	BcAngle T (90. - atan2(1.,t)*180./M_PI)	
        }
    

        top = Boundary {
    	BcDirichlet U y
    	BcAngle T (180. - atan2(1.,t)*180./M_PI)
        }
    

        bottom = Boundary {
    	BcDirichlet U y
    	BcAngle T atan2(1.,t)*180./M_PI
        }
    

  • Potential flow around a sphere
  •     left = Boundary { BcDirichlet U U0 }
    

        right = Boundary { BcDirichlet U U0 }
    

  • Viscous flow past a sphere
  •     left = Boundary { BcDirichlet U U0 }
    

  • Mass conservation
  •     left = Boundary {
    	BcDirichlet U 1
    	BcDirichlet V 0
        }
    

  • Mass conservation with solid boundary
  •     left = Boundary {
    	BcDirichlet U 1
    	BcDirichlet V 0
        }
    

  • Boundary layer on a rotating disk
  •     left = Boundary {
    	BcDirichlet U 0
    	BcDirichlet V 0
    	BcDirichlet W y
        }
    

        right = Boundary {
    	BcNeumann U 0
    	BcNeumann V 0
    	BcNeumann W 0
            BcDirichlet P 0.
        }
    

        bottom = Boundary { BcDirichlet W 0 }
    

        left = Boundary {
    	BcDirichlet U 0
    	BcDirichlet V 0
    	BcDirichlet W y
        }
    

        right = Boundary {
    	BcNeumann U 0
    	BcNeumann V 0
    	BcNeumann W 0
            BcDirichlet P 0.
        }
    

        left = Boundary {
    	BcDirichlet U 0
    	BcDirichlet V 0
    	BcDirichlet W y
        }
    

        right = Boundary {
    	BcNeumann U 0
    	BcNeumann V 0
    	BcNeumann W 0
            BcDirichlet P 0.
        }
    

        left = Boundary {
    	BcDirichlet U 0
    	BcDirichlet V 0
    	BcDirichlet W y
        }
    

        right = Boundary {
    	BcNeumann U 0
    	BcNeumann V 0
    	BcNeumann W 0
            BcDirichlet P 0.
        }
    

        top = Boundary {
    	BcNeumann U 0
    	BcNeumann V 0
    	BcNeumann W 0
        }
    

  • Lid-driven cavity at Re=1000
  •   top = Boundary {
        BcDirichlet U 1
        BcDirichlet V 0
      }
    

      bottom = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      right = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      left = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

  • Lid-driven cavity at Re=1000 (explicit scheme)
  •   top = Boundary {
        BcDirichlet U 1
        BcDirichlet V 0
      }
    

      bottom = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      right = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      left = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

  • Lid-driven cavity with a non-uniform metric
  •   top = Boundary {
        BcDirichlet U 1
        BcDirichlet V 0
      }
    

      bottom = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      right = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      left = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

  • Lid-driven cavity on an anisotropic mesh
  •   top = Boundary {
        BcDirichlet U 1
        BcDirichlet V 0
      }
    

      right = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      left = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      bottom = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      right = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

      left = Boundary {
        BcDirichlet U 0
        BcDirichlet V 0
      }
    

  • Poiseuille flow
  •     bottom = Boundary {
            BcDirichlet U 0 
        }
    

        top = Boundary {
            BcDirichlet U 0 
        }
    

  • Bagnold flow of a granular material
  •     top = Boundary {
            BcNeumann V 0
            BcDirichlet P 0
        }
    

        bottom = Boundary {
            BcDirichlet U 0
        }
    

  • Poiseuille flow with metric
  •     bottom = Boundary {
            BcDirichlet U 0 
        }
    

        top = Boundary {
            BcDirichlet U 0 
        }
    

  • Wind-driven lake
  •     top = Boundary {
    	BcNeumann U 1.
        }
    

        bottom = Boundary {
    	BcDirichlet U 0
        }
    

  • Convergence of a potential flow solution
  •     left = Boundary { BcDirichlet U 1 }
    

        right = Boundary { BcDirichlet U 1 }
    

  • Flow through a divergent channel
  • GfsBox { left = Boundary { BcDirichlet U 1 } }
    

  • Potential flow around a thin plate
  •   left = Boundary { BcDirichlet U 1 }
    

  • Translation of an hexagon in a uniform flow
  •     left = Boundary {
    	BcDirichlet U 1
    	BcDirichlet T 1
        }
    

  • Sessile drop
  •     bottom = Boundary {
    	BcAngle T ANGLE 
        }
    

        left = Boundary # axis of symmetry
    

  • Transcritical flow over a bump
  •     right = Boundary {
    	BcDirichlet P 0.33
    	BcNeumann U 0
        }
    

        left = Boundary {
    	BcDirichlet U 0.18
        }
    

  • Transcritical flow with multiple layers
  •     right = Boundary {
    	# set water depth at outlet
    	BcDirichlet P HE
    	BcNeumann U 0
        }
    

        left = Boundary {
    	# set flow rate at inlet, evenly distributed over all layers
    	BcDirichlet U Q/NL
        }
    

  • Circular dam break on a sphere
  •     right = Boundary { BcNeumann U 0 }
    

        left = Boundary { BcNeumann U 0 }
    

        top = Boundary { BcNeumann V 0 }
    

        bottom = Boundary { BcNeumann V 0 }
    

  • Circular dam break on a rotating sphere
  •     right = Boundary { BcNeumann U 0 }
    

        left = Boundary { BcNeumann U 0 }
    

        top = Boundary { BcNeumann V 0 }
    

        bottom = Boundary { BcNeumann V 0 }
    

  • Creeping Couette flow between cylinders
  •     left  = Boundary { 
    	BcDirichlet V 0.25 
    	BcDirichlet T 0.25 
        }
    

        right = Boundary { 
    	BcDirichlet V 0. 
    	BcDirichlet T 0
        }
    

  • Flow between eccentric cylinders using bipolar coordinates
  •     left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

        left = Boundary { BcDirichlet V 0 }
    

        right = Boundary { BcDirichlet V 1 }
    

  • Dielectric-dieletric planar balance
  •    top   = Boundary {
           BcDirichlet Phi  1
           BcDirichlet P 0
       }
    

       bottom = Boundary {
           BcDirichlet Phi 0.       
       }
    

  • Balance with solid boundaries
  •     top   = Boundary {
    	BcDirichlet Phi  1
    	BcDirichlet P 0
        }
    

        bottom = Boundary {
    	BcDirichlet Phi 0.       
        }
    

  • Relaxation of a charge bump
  •     left   = Boundary { BcDirichlet Phi 0 }
    

        right  = Boundary { BcDirichlet Phi 0 }
    

        top    = Boundary { BcDirichlet Phi 0 }
    

        bottom = Boundary { BcDirichlet Phi 0 }
    

  • Charge relaxation in an axisymmetric insulated conducting column
  •     top = Boundary { BcDirichlet Phi 0 }
    

  • Charge relaxation in a planar cross-section
  •     top = Boundary { BcDirichlet Phi 0 }
    

        bottom = Boundary { BcDirichlet Phi 0 }
    

        left = Boundary { BcDirichlet Phi 0 }
    

        right = Boundary { BcDirichlet Phi 0 }
    

  • Equilibrium of a droplet suspended in an electric field
  •     right = Boundary {
            BcDirichlet Phi Ef*x
        }
    

        left = Boundary {
            BcDirichlet Phi Ef*x
        }
    

        top = Boundary {
            BcDirichlet Phi Ef*x
        }
    

  • Gouy-Chapman Debye layer
  •     top = Boundary 
    

        left = Boundary { 
    	BcDirichlet Phi Volt 
    	BcDirichlet Cpos exp(-Volt) 
    	BcDirichlet Cneg exp(Volt) 
        }
    

        top = Boundary 
    

        top = Boundary 
    

        top = Boundary 
    

        top = Boundary 
    

        right = Boundary { 
    	BcDirichlet Phi 0.
            BcDirichlet Cpos 1.
            BcDirichlet Cneg 1. 
        }
    

  • Simple example of groundwater flow following Darcy's law
  •     top = Boundary {
    	BcDirichlet P 0
    	BcDirichlet U 0
    	BcNeumann V 0
        } 
    

        left = Boundary {
    	BcDirichlet P -M_PI/2
    	BcNeumann U 0
    	BcDirichlet V 0
        }
    

  • Groundwater flow with piecewise constant permeability
  •     top = Boundary { 
    	BcDirichlet P 0
    	BcDirichlet U 0
    	BcNeumann V 0
        } 
    

        left = Boundary {
    	BcDirichlet P -2*M_PI/3
    	BcNeumann U 0
    	BcDirichlet V 0
        }
    

Personal tools
communication