```Define h0 10.
Define a 3000.
Define tau 1e-3
Define B 5
Define G 9.81

1 0 GfsRiver GfsBox GfsGEdge {} {

# Analytical solution, see Sampson, Easton, Singh, 2006
Global {
static gdouble Psi (double x, double t) {
double p = sqrt (8.*G*h0)/a;
double s = sqrt (p*p - tau*tau)/2.;
return a*a*B*B*exp (-tau*t)/(8.*G*G*h0)*(- s*tau*sin (2.*s*t) +
(tau*tau/4. - s*s)*cos (2.*s*t)) - B*B*exp(-tau*t)/(4.*G) -
exp (-tau*t/2.)/G*(B*s*cos (s*t) + tau*B/2.*sin (s*t))*x;
}
}

PhysicalParams { L = 10000 }
RefineSolid LEVEL
Solid (y - 4999.)
Init {} {
Zb = h0*(x/a)*(x/a)
P = MAX (0., h0 + Psi (x, 0.) - Zb)
}
Init { istep = 1 } {
Pt = MAX (0., h0 + Psi (x, t) - Zb)
}
PhysicalParams { g = G }
SourceCoriolis 0 tau
Time { end = 6000 }
OutputSimulation { start = 1500 } sim-LEVEL-%g.txt { format = text }
OutputSimulation { start = end } end-LEVEL.txt { format = text }
OutputScalarSum { istep = 10 } ke-LEVEL { v = (P > 0. ? U*U/P : 0.) }
OutputScalarSum { step = 50 } vol-LEVEL { v = P }
OutputScalarSum { step = 50 } U-LEVEL { v = U }
OutputErrorNorm { istep = 1 } error-LEVEL { v = P } {
s = Pt
v = DP
}
} {
# this is necessary to obtain good convergence rates at high
# resolutions
dry = 1e-4
}
GfsBox {
left = Boundary
right = Boundary
}
```